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Abstract

We develop a novel probabilistic model for in-
terpersonal coordination as a latent phenomenon
explaining statistical temporal influence between
multiple components in a system. For example,
the state of one person can influence that of an-
other at a later time, as indicated by their observed
behaviors. We characterize coordination as the
degree to which the distributions for such states at
one time point are merged for the next salient time
point. We evaluate our model in the context of
three-person teams executing a virtual search and
rescue (SAR) mission. We first use synthetic data
to confirm that our technical definition of coordi-
nation is consistent with expectations and that we
can recover generated coordination despite noise.
We then show that captured coordination can be
predictive of team performance on real data. Here
we use speech vocalics and semantics to infer
coordination for 36 teams carrying out two suc-
cessive SAR missions. In two different datasets,
we find that coordination is generally predictive
of team score for the second mission, but not for
the first, where teams are largely learning to play
the game. In addition, we found that including a
semantic modality improves prediction in some
scenarios. This shows that our intuitive technical
definition can capture useful explanatory aspects
of team behavior.

1. Introduction

In a basketball game, when a team is on the offense, they
must maintain proper spacing and timing to execute plays
effectively without interfering with each other’s positions.
When on defense, they must work together to switch assign-
ments, cover open areas, and block shots. In other words,
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they need to be coordinated. This example illustrates that
the concept of coordination is intuitively understood by
most people, i.e., ‘you know it when you see it’. However,
defining it precisely—and computationally—is challenging.

We study coordination in the context of a system of humans
working together towards a common goal (i.e., collabora-
tion) or contrastive goals (i.e., competition). Coordination
here means the spontaneous temporal synchronization of
behavioral sub-processes among individuals in social in-
teractions, known as interpersonal coordination (Cornejo
et al., 2017; Butler, 2022). Computationally, we interpret
coordination as the causal linkage of a latent process that
captures important interactions and could predict outcomes.
This perspective on coordination does not require agency,
goal-directed behavior, or modeling as a game, unlike the
game-theoretic view (Cooper, 1999). It focuses on how one
system abstraction (e.g., communication behavior), influ-
ences another.

Such abstraction is needed to endow systems with inter-
pretable understanding of complex interactions among hu-
mans. We are motivated to assess coordination in sce-
narios where it remains implicit, subliminal, unconscious,
or perhaps salient to participants but not easily explained,
such as when two individuals seamlessly connect while
performing a task. We are specifically interested in tempo-
ral correlations resulting from causal interactions between
system components, excluding coordination due to unre-
lated factors—e.g., correlated brain activity between people
watching the same movie simultaneously, without being in
the same place (Hasson et al., 2004). This phenomenon is
often labeled as coordination, but we prefer the term ‘syn-
chrony’. It is typically assessed through data correlations
over time, but these correlations do not reflect interpersonal
interaction; rather, they are tied to shared external factors,
such as the movie being co-watched in this example.

Most current approaches do not directly address coordi-
nation front and center as an explanatory concept. It is
commonly assumed that temporal correlations reflect coor-
dination without defining what it means computationally.
This limits the interpretability of coordination quantities
and makes integrating signals from different modalities and
timescales complex.

Notably, Butner et al. (2014)—influenced by von Holst
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(1973)—offers a broader approach where change scores in
two variables are driven by a common coordination level,
but it does not consider causal influence between interact-
ing components. Recently, Wiltshire et al. (2022) posited
the pressing need for a more systematic approach to co-
ordination, especially in online contexts. Inspired by this
urgency and the admirable prior efforts to quantify coordina-
tion thus far, we introduce a novel computational definition
to overcome the limitations of existing methods.

Key Contributions 1) We propose a novel computational
model that explicitly defines coordination as a latent phe-
nomenon that controls the influence of multiple components
in a system on each other at a later point in time; 2) We
develop how evidence for coordination processes can be
from diverse modalities, operating at different time scales.
3) Using synthetic data, we propose a measure to evaluate
when estimating coordination is useful and show that our
computational definition of coordination aligns with our
intuition and can handle injected noise in the data. 4) Using
data from real human participants, we show that our model
of coordination can be predictive of team performance on
collaborative tasks and that adding extra modalities can be
advantageous.

2. Related Work

Most existing approaches address coordination ! using time-
series analysis techniques to identify temporal correlations.
These proxy measures for coordination are then studied as
informative of group attributes such as team performance.
Cross-correlation of brain signals from interacting partners
has been found to be predictive of team performance (Hen-
ning & Korbelak, 2005). Entropy yielded a similar trend
in experiments with dialog data (Wiltshire et al., 2018; En-
gome Tchupo & Macht, 2023; Delaherche et al., 2012).
Some studies (Levitan & Hirschberg, 2011; Lubold & Pon-
Barry, 2014; Borrie et al., 2015; Litman et al., 2016; Rahimi
etal., 2017; 2019) quantify coordination by comparing the
values of multiple time series in terms of similarity and
convergence. More abstractly, principal component analysis
can assess interpersonal coordination as the degree to which
variance is preserved when one person’s series is projected
onto the space of another person’s series (Lee et al., 2014).

Cross-recurrence quantification analysis (CRQA) (Marwan
et al., 2002; Wallot, 2019) has been used to quantify aspects
of coordination and team dynamics (Strang et al., 2014;
Fusaroli et al., 2016; Knight et al., 2016; Borrie et al., 2019;
Amon et al., 2019; Borrie et al., 2019). Similar analyses
have been reported in the frequency domain using tools like
cross-wavelet coherence (CWC) to estimate coordination in

IThe term ‘entrainment’ is used in some of these studies to refer
to a concept that is qualitatively similar to our working definition
of coordination.

collaborative problem-solving (Wiltshire et al., 2019), jazz
performances (Walton et al., 2015), joke-telling (Schmidt
et al., 2012), unstructured conversations (Fujiwara & Daibo,
2016), and dance (Washburn et al., 2014).

Mechanistic Models Instead of focusing on temporal data
correlations, another approach consists of modeling coordi-
nation using a set equations defining a system of coupled os-
cillators (Zhang et al., 2019; Miao et al., 2023). For instance,
Zhang et al. (2019) define coordination as a phenomenon
influencing coupling strength through phase-locking. The
authors found success in capturing coordination patterns
with and across groups in a multiparty rhythmic task. Rather
than define coordination as synchronous phase-locking, we
define it as a level of causal influence among latent pro-
cesses, themselves linked to varying data modalities and
time scales.

Latent Variable Models More similar to our work, But-
ner et al. (2014) employ latent variables to capture coordi-
nation in multimodal data streams over time, focusing on
synchrony control among modalities but not causality. Their
reliance on Latent Change Score (LCS) models presents
challenges such as complex interpretation and implementa-
tion, limitations in handling non-linear relationships, and
biased estimation (Klopack & Wickrama, 2019; Kievit et al.,
2018; Fernandez et al., 2021). In a similar vein, Moulder
et al. (2022) introduce a framework to capture temporal
dependencies and interactions between multiple data modal-
ities, but do not explicitly define coordination as a construct.
Instead, they rely on a synchrony measure, aligning more
with Butner et al.’s definition. In contrast to these two ap-
proaches, we adopt dynamic Bayes networks (DBNs) due
to their generative capacity, flexibility in incorporating prior
knowledge, and ability to handle non-linear relationships,
missing data, and uncertainty (Murphy, 2012).

Multi-agent Reinforcement Learning Our view on co-
ordination differs from multi-agent reinforcement learning
(MARL), but there is some overlap in situations where hu-
mans synchronize efforts toward shared or complementary
objectives. For example, in the Minecraft-based search and
rescue missions we study in this paper, we sometimes as-
sume that the participants’ shared goal is a higher team score.
However, our approach is agnostic to this goal-oriented ex-
planation of human behavior. For instance, the players could
equally want to socially connect with their peers. More gen-
erally, interpersonal coordination can encompass scenarios
with implicit, unknown or even non-existent goals (e.g., a
couple arguing because there are unresolved power issues
in their relationship that they cannot articulate). Further, in
our applications, the notion of local utility would be more
abstract, such as the utility of a change in neural activity or
respiratory rhythm in resolving the ill-defined issue with the
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couple’s power dynamics.

A common limitation among the current approaches is the
difficulty of combining data with different time scales in
the model. This is important because different modalities
may be observed at different frequencies that define not
only the periodicity of raw measurements but also how they
affect each other in the system. In the next section, we detail
how our formulation naturally combines components with
different time scales.

3. Model of Coordination

Intuitively, coordination is a general concept present in many
contexts, across multiple observation modalities and time
scales. We observe coordination among people in groups as
a phenomenon detached from particular observation modal-
ities. Hence, a model of coordination should be about the
statistical properties of the interacting components. We ex-
ecute this by having coordination explicitly modulate the
degree to which components are influencing each other. We
further model components of the system as latent so that
their temporal trajectory can simply lead to observations of
multiple modalities at arbitrary time scales.

Main Idea We model a coordination process as some la-
tent components being repeatedly predictive of others at
some later point in time. Consider two components, each
with a distribution for their next state (e.g., a normal dis-
tribution centered at the current state). If each component
draws from its own distribution, then the components are
not influencing each other. A key idea of our approach
is to identify coordination as using some of one person’s
distribution to predict another’s distribution. This excludes
spurious correlations such as the example in §1 of two peo-
ple watching the same movie in different places. Here, your
own state might predict your next state due to smoothness,
but using the other person’s predicted state would generally
not be additionally helpful. However, if they are sitting next
to you and begin laughing at the movie, causing you to also
laugh, then their state has some predictive power for your
next state and we consider the phenomenon as coordination
in our model.

Latent System Components We denote latent system
components that may exhibit collective coordination by
Af’p , where n indexes components (e.g., speech vocalics), p
indexes people, and ¢ indexes discrete time steps associated
with available data. We denote the collection of compo-
nents by A = {A™P}. The time scale for each A" can be
different—hence, the semantics of the subscript ¢ depend on
the context implied by A”™. When this needs to be explicit,
we use f,, and map to actual time by f"(¢,). For instance,
if we model coordination at every second but observe some

modality, n, at regular intervals of 5 seconds, f"(¢") = 5¢".

The precise identities of these latent components remain
an empirical question. However, we have an intuition on
what they may represent. For instance, cognitive state is a
possible interpretation for a latent system component model-
ing brain data. Alternative possibilities are attentional state,
emotional state, or mental effort.

Component Groups In our latent space, the level of co-
ordination C is shared by multiple interacting groups of

8 8 .
components, [, = {A"™wPm} 1.0, where g indexes the
groups, m indexes the members of a group, and M, is the
number of members of group /.

In other words, component groups are used to group modal-
ities into one latent system component. Typically, these
groups exhibit similar time scales and consist of a single
evidence modality; however, this criterion is not manda-
tory. For instance, it is possible to employ a single group
to encapsulate latent components that depict neural activity
as observed through functional near-infrared spectroscopy
(fNIRS) and electroencephalogram (EEG) modalities simul-
taneously.

In this work we use two groups (latent vocalics and latent
semantics) over three participant pairings.

Coordination Level We denote the coordination level by
C € [0,1]. The latent components, A™P € A within an
interacting group influence each other as moderated by C,
which controls how distributions for A™? are blended. For
a pair of components, C = 0 means that both are drawn
from their own distribution, C = 0.5 means they share an
equal blend of their distributions (maximally coordinated
system), and C = 1 is the extreme case where they switch
distributions.

In our experimental domain, coordination is symmetrically
shared. If we were modeling a leader and follower, influence
from coordination would be asymmetric. We also assume
that coordination is relatively persistent—i.e., it is either
constant, changes between 0 and 1 infrequently, or changes
slowly, depending on the scenario. Figure 1 shows a graphi-
cal model with two interacting groups with different time
scales: I} = {A"!, A2} and I, = {A%>!, A>?).

Observations We denote observations associated with
AP asof? 'l ¢ 0, where [ indexes features, each with its
own distribution.

Joint Distribution Let 7 be the number of time steps in
the coordination time scale, G the number of interacting
groups, M = {My, ..., Mg} the set containing the number
of members in each interacting group, T"m the number of
time steps in the scale of the component nf,, and L™ the
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number of features in observations of the component 75,.

The joint distribution, p(Co.7, A, O, G, M), is the product
of three terms, pcoordinations P component and pobservation:

T
Pcoordination = P (CO) 1—[ p (Ct | Ct—l) s

t=1
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where Ptransition is given by
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While coordination does not appear in pobservation directly,
it may be convenient to have popservation as a function of
coordination, which we do for semantic linkage in §6.

1,1 1,1
Ay Ao

Figure 1: A dynamic Bayes net for coordination in the
case of two pairs of latent conceptual components where
each pair has its own time scale for linkage. Here, each
component (red and green) is encoded for two people and
has two observations, each at relevant times as indicated
by shaded circles. As drawn, each person’s component
values influence themselves over time (red and green arrows)
as regularization. The coordination variable (blue open
circles) evolves over time and influences the degree that
the distribution of a person’s component is influenced by
their partner’s component at a previous time point. No
coordination is equivalent to removing the lavender and
orange arrows. For the discrete model, coordination simply
selects between the two incoming distributions (e.g., red
and lavender for A1 and A!-?). For the continuous model,
the distributions are blended based on coordination.

3.1. Choices of Coordination Distribution

Discrete Coordination In our discrete coordination
model, coordination is either present or absent—i.e., there
are no intermediate levels. Formally, C; € {0, 1} and is
either declared constant (C, = C) or switches at each time

step with some probability. For ¢ = C (1) the transition

nf,.pt, ¢
{At/ -l } ) .
m#+m’
3

That is, coordination defines whether a component depends
on its base distribution (¢ = 0) or the base distribution for
its peer(s) (¢ = 1). To explicitly model in-between behavior,
we use continuous coordination.

distribution in (2) becomes

1-c
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Continuous Coordination For continuous coordination,
instead of switching between the two distributions, we blend
them. Executing this depends on the particular distributional
and modeling intuition. For the simplest case of two normal
distributions with means g, i1 and equal variance of‘, it
is natural to use the convex combination of the two means,
e = (1=c)po+cuy, as the mean for the blended distribution
and o"i as its variance. The transition distribution from (2)
becomes

8 g g/’ gl
(1= c)AMmPm 4 c AT Pt 2] ()

t’ -1 -1

N ( AT

3.2. Time Scales

Each interacting group of components shares a time scale
for grouping associated observations that roughly corre-
sponds to how quickly we expect distributional adaptation.
For instance, brain activity from different regions might
exhibit influence in milliseconds, while reacting to someone
else’s actions might occur in a few seconds. For vocalic
entrainment (Lee et al., 2014)—a related phenomenon in
which individuals mirror each other’s speech and linguis-
tic features during sustained interactions and cooperative
tasks—a natural time scale is based on the speech utterance
of one person delimited by turn-taking whereas for certain
structured activities, such as team rope jumping, the activity
itself imposes a clock on many observations. It is important
not to confuse these time scales with the frequency of raw
measurements. The coordination time scale is often imple-
mented as windows of times where we define distributions
of raw measurements. The modeling approach developed in
this section naturally combines components with different
time scales.

3.3. Going Beyond Pairs

We consider two cases for modeling components that are
influenced by more than one other component. First, in
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cases like group conversations in our experiments in §7,
we assume perfect turn-taking so that the influences are
serialized (component n = 1 in Figure 1). Here we use
metadata (e.g., the identity of the interlocutor) to dictate
which variables participate in distributional blending at a
given point in time, but we still have pairwise influences.
The use of metadata here is minimal and straightforward.
Implementation-wise, we provide components that abstract
the use of metadata for model construction in our code.

A natural way to extend the pairwise strategy to N variables
is to blend each variable’s distribution with weight 1 — C,
with an equal blend (e.g., average of means) of the other
N — 1 variables with weight C. So, for level C = (N—1)/N,
all variables have the same distribution (overall equal blend),
for a maximally coordinated system. When C > (N —
1)/N (we term this case super-coordinated), participants
are mimicking other participants’ distributions more than
their own base distribution.

3.4. Model Instantiation

Our model of coordination is a general formulation about
whether the distributions of your partners are helpful in pre-
dicting your own trajectory. We do not confine ourselves
to the blending options proposed in this paper, nor do we
take a definitive stance on whether coordination is discrete
or continuous. Instead, we outline choices that we consider
intuitive and easily applicable, serving as a foundational
starting point for experimenters. Determining the most suit-
able blending scheme, conditional distributions, and coordi-
nation domain for a specific problem remains an empirical
question.

Our findings with synthetic and real-world data suggest that
opting for mean-based blending and continuous coordina-
tion proves advantageous. While we employ simple distri-
butions in this study, we acknowledge the potential need for
more complex ones. In such cases, neural networks may
serve as optimal tools for learning intricate distributions,
and our proposal does not preclude their usage.

Additionally, while our approach can have symmetric or
unidirectional causality (e.g., a designated leader and fol-
lower), we chose to share the degree of causality among
all subjects in our model instances (all players influence
each other). This choice was largely in deference to our
application, which is a collaborative task with no designated
leaders and followers among the three participants.

4. Inference

The main contribution of our study lies in the proposed
modeling approach. Appropriate learning methods will vary
depending on the choices made when instantiating the con-
ceptual framework into a precise model. In instances where

a probabilistic graphical model (PGM) is employed, variants
of sampling are likely to be effective at some computational
cost. For more intricate model instances, gradient-based
methods may prove to be more suitable.

In this work, we adopted NUTS (Hoffman & Gelman,
2014) as our inference method, as it demonstrated con-
vergence in both synthetic and real-data evaluations and
accurately estimated coordination in the synthetic model.
Further details on configuration, and computational re-
sources used can be found in Appendix A. Our code
and preprocessed datasets are available online at https:
//github.com/ml4ai/tomcat-coordination.

5. Data

We evaluate our model on two distinct datasets based on the
same task, but with different participants and experimental
procedures. The first is the ASIST Study 3 dataset (Huang
et al., 2022a), and the second is the TOMCAT dataset (Pyare-
lal et al., 2023). For the ASIST dataset, participants per-
formed the task remotely from their own homes, while for
the TOMCAT dataset, the participants were physically co-
located in a lab and instrumented with a multitude of sen-
sors including basic physiology (EKG), skin conductance
(GSR), eye trackers, and combined fNIRS and EEG cap.
In both cases, their spoken dialog during the missions was
recorded. In this section, we offer a concise overview of the
task and data cleaning process. For more details, refer to
Appendix B.

Task In both experiments, teams played two missions, A
and B, in which they were tasked with rescuing victims
of an office building collapse simulated in Minecraft. The
teammates were given unique roles with complementary
abilities and pieces of information, incentivizing them to
coordinate their activities and share information in order to
maximize their performance on the task, as measured by a
game score ranging from 0 to 950.

Potentially, teams were advised by one of six Al agents dur-
ing the mission. From the ASIST dataset, we use data from
two conditions: the ‘No-Advisor’ condition, where teams
were not paired with an advisor (14 teams) and the ‘“ToM-
CAT Advisor’ condition (13 teams). This particular advisor
was designed to increase team coordination by intervening
on team communications (Mathieu et al., 2020).

In the TOMCAT dataset, most of the trials used the TOMCAT
advisor, and thus we only use data from that condition. After
removing interrupted trials, trials with problems in the audio
files for some participant, and trials where an experimenter
had to stand-in as a third participant, we ended up with 16
trials (8 in each mission) from 9 teams.
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Pre-processing From these datasets, we derived two
modalities: vocalic features and event labels, extracted
from spoken inter-player dialog transcribed by an automatic
speech recognition (ASR) component. We analyze both
modalities in units of utterances, assuming perfect turn-
taking. In cases of overlapping utterances where multiple
people speak simultaneously, we use both utterances as
evidence, ordered by their end times. If their end times
coincide, we randomly select one.

We use four openSMILE (Eyben et al., 2010) vocalic fea-
tures (pitch, intensity, jitter, and shimmer) from each partic-
ipant’s audio stream. Using utterance start and end times-
tamps, we segment the stream to discard periods of silence.
Averaging vocalic features within each utterance, we ob-
tain a 4-dimensional sparse time series of average vocalic
features per participant, timed at the end of utterances. Ad-
ditionally, we compute z-scores per subject and feature to
account for biological differences in people’s voices.

6. Vocalic Model

Here, we elaborate on our instantiation of a coordination
model for vocalic and semantic modalities. We model co-
ordination as a continuous variable, with its time evolution
described by the following equations:

‘s = {puo +e, t=0

U1 +€, t#0 &)

C, = sigmoid(u,) ,

where p,,, represents the initial coordination value, €,
and ¢, denote process noise with a prior distribution of
N(0,02), and u; serves as an auxiliary variable which is
then fed into a sigmoid to constrain coordination (C;) to lie
within [0, 1].

We denote the vocalic component as n = 1 and the semantic
component as n = 2. The latent vocalic component is mod-
eled with four dimensions, each corresponding to a vocalic
feature. Further, it is blended using a pairwise blending
scheme for serialized data, as outlined in §3.3. Formally,
Atl’p and its observations can be described by the following
equations:
L.p +€,1 t=0
Al,p _ Haq AyP
[ L,p 1,p’
(1_Cf](t))At—l-'-Cfl(t)At—l +EA)I‘,17 tiO
1 1
0. P=A"Y+¢ .1, ,
t t foils

(6)

where ;1114’: denotes the initial latent value for person p, and
p’ refers to the previous speaker other than p. The function
f'(-) maps the time in the component scale to the time in

coordination scale. The terms e ALP and € 4L Tepresent the
0 t

process noise with a prior distribution of A (0, O’il ), shared

across subjects. Moreover, €olr stands for the observation
t

noise with a prior distribution of N (0, o-él ), shared among
subjects and vocalic features.

In experiments with synthetic data, we estimate all parame-
ters. However, the model has too much power to infer o,
o 41, and o1 on real data which is quite noisy and sparse.
Thus, we set o, = 0.5 and 051 = 0.1 (values to which
the model is not particularly sensitive). We employed a
HalfNormal(1) as a hyper-prior for o41, N(0,5) for p,,
and N (0, 1) for ,ukf . In experiments where o1 and o, are
not fixed, we use a HalfNormal(1) as their hyper-prior.

Semantic Links We integrate insights from Rational
Speech Act models (RSA) (Goodman & Frank, 2016) to
introduce an additional modality based on semantic infor-
mation in team conversations. In RSA, a set of probabilities
is often used to model the reasoning processes of speakers
and listeners—e.g., the probability of a speaker choosing an
utterance.

In our context, each subject acts as both a listener to the
previous speaker and a speaker for the subsequent listener
at every time step. Semantic link events are identified by
analyzing event labels assigned to subjects’ utterances, sig-
naling coordination-indicative semantics in temporally prox-
imate utterances from different subjects. In particular, we
define a set of pairs of ‘source’ (s;) and ‘target’ (z;) labels,
L = {(s1,11),.... (sn, 1)} that we believe are indicative
of team coordination (see Appendix C). We seek pairs
of utterances with matching labels, such as (HelpRequest,
HelpCommand), representing a player’s request for help
and another player’s acknowledgment of assistance, respec-
tively.

The time scale of this component is defined by moments
when the combination of labels produced by any subject
other than p in the past w, time steps (w, = 5 in our
experiments) and the labels produced by p at time 7 forms
any pair in L. Formally, it is the set of times # for which 3i €

{1,...,w,} such that (‘L{t”_’l X“LIIP) N L # 0, where U? is
the set of labels associated with the utterance produced by
the subject p ending at time ¢.

We set the observed values of this component to 1 and model
them directly as a function of coordination. In particular,
observations are sampled from Gaussian distributions with
mean given by the levels of coordination over time. We
use the standard deviation of this distribution to control the
event’s significance: the larger its value, the less likely the
event (e.g., response to a help request) is associated with
increased coordination as the Gaussian distribution around
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the coordination level becomes wider. Formally,
2,
Ol e Cf2(t) +€Ot2,p, (7)

where €. is the observation noise with a prior distribution
t

N(O, o-éz), and the function £%(-) maps the time in the
component scale to the time in the coordination scale. In
experiments with real data, we set 073, to 5.0.

The models with semantic links, vocalics and vocalics plus
semantic links as modalities are denoted as Mjink, Myoc and
M yoc+1ink respectively. Additionally, we infer coordination
at every second during the 17-minute missions, resulting in a
time series of T = 1020 points. We chose one second as our
temporal resolution due to the typical duration of utterances
during missions which ranges from a few seconds to a few
tens of seconds.

7. Evaluation

Coordination is an intuitive concept, but we are not aware
of a general computational definition in the literature. Com-
paring our model with other methods, invariably designed
for particular data, is challenging, as ground truth for co-
ordination is not known or even well-defined. Evaluation
is thus not trivial as we are developing a methodology for
measuring a concept while simultaneously exploring when
the concept is predictive.

In this work, we employ posterior predictive analysis to
show that a model incorporating coordination yields im-
proved predictions of future observations. We choose a
window size, w = 5, and construct a set of 10 time points,
7, comprising random integers uniformly sampled without
replacement from the interval (7/2,T — w), where T rep-
resents the size of the coordination scale. For each ¢t € T,
we fit a model up to time ¢ and use 100 samples from the
posterior distribution as initial particles for the system. Sub-
sequently, we evolve the system from time 7+ 1 to time # +w
(held out) with ancestral sampling and compare the sam-
ples 0, with real observations O,, within that interval. This
procedure provides a Monte Carlo estimate of the expected
squared error of predictions in the future with respect to the
model’s posterior distribution. We then calculate the root
mean squared error (RMSE) and standard error of the mean
across different missions in each dataset. Formally,

WL|T|ZZ ( 0}'] -0 ) ’

=1 tet t'=t+1
(3)

RMSE(7,w) =

/

where [ € {1,2,3,4} indexes the vocalic features and L
is the number of vocalic features used (i.e., L = 4). For
simplicity, we omit the subject’s superscript.

We validate this evaluation criteria, explore model properties
and inference using synthetic data. Following this, we assess
real data, demonstrating that a model with coordination
consistently results in smaller RMSEs. Finally, we gauge
the predictive power of estimated coordination on team
performance across various conditions compared to baseline
predictors.

Experiments with Synthetic Data We use a smaller ver-
sion of My, with just pitch and intensity to generate syn-
thetic data using ancestral sampling. For data generation,
we set 041 = 0.01, 01 = 1.0, and fix the value of coordi-
nation to different levels to check that we can recover them
using the chosen inference procedure.

In Figure 2, coordination determines the rate at which sub-
jects’ pitches converge to a shared value. Note that this
represents an extreme scenario with persistent coordination
and no noise in the process or observations (plots feature
o 41 and o1 set to O for clarity). While perfect coordination
is unlikely in the real world, this scenario helps elucidate
our model’s hypotheses in a noise-free context.

Crucially, the figure highlights we can estimate the inher-
ent coordination level employed in generating the noisy
data. Data was generated fixing coordination to be constant,
but M. assumes coordination changes over time, causing
increased uncertainty the longer in the future we try to es-
timate coordination. When subjects have reached shared
vocalic feature values, any coordination level is acceptable.
However, the accurate expected value is maintained due to
the early time steps significantly contributing to inferring
the rate of convergence in the subjects’ vocalic features.

Next, we compute the RMSEs of the predicted observa-
tions to assess whether this measure is a suitable evaluation
criterion for detecting signs of coordination in the data.
Specifically, we establish two models: (i) M., with positive
coordination, and (ii) M., which is an ablated version of M.
without the coordination variable. Subsequently, we gener-
ate three datasets D, D, D, with 10 samples each (each
sample has 50 time steps). D, and D,, are generated by
drawing samples from M. and M, respectively, and D, by
generating iid samples from a standard normal distribution.

Table 1: RMSE and standard error (in parentheses) of pre-
dicted vocalics on random data (D,) and synthetic data
generated by models with (M) and without coordination
(My).

Dy De D,
M. 0.05(.002) 0.18(.004) 1.05(.003)
M, 0.06(.003) 0.11(.004) 1.04 (.003)
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Figure 2: Synthetic data and inferred coordination in M.
In the absence of coordination, the pitches of Bob, Alice,
and Dan evolve independently. As coordination intensi-
fies, their pitches converge, indicating an influence on each
other’s vocal styles. For clarity, the visualizations display
data before introducing noise. The bottom-right plot depicts
the inferred coordination for the generated datasets after
noise is added.

We then fit both models on the three datasets and compute
RMSE:s.

Results in Table 1 showcase the superiority of M. in pre-
dicting future data when D is generated from a model with
coordination set to 0.2. Similar outcomes were observed
for various coordination levels. Notably, in the absence of
coordination signals in the data, M, performs similarly to
M, as it performs no better than chance on D, and it can ef-

Table 2: RMSE and standard error (in parentheses) of
predicted vocalics on data from the ASIST and TOMCAT
datasets.

ASIST  ToMCAT
My real 1.59 (.05)  1.45 (.04)
Myoc 1.45 (.05)  1.32 (.04)
Myoestink 1.36 (.03)  1.34 (.07)

fectively learn coordination equal to 0 on D . In such cases,
modeling coordination may not be advantageous, given the
additional computational resources required for inference
and the lack of meaningfulness in the estimated value.

Experiments with Real Data To evaluate the proposed
approach on real data, we use Myoc, Miink and Myoc+link tO
model teams of three humans collaborating on the complex,
time-constrained urban search and rescue (USAR) missions
from the ASIST and TOMCAT datasets.

We begin by evaluating RMSEs for Myoc, Myoc+link, and
a modified version of the former that lacks the coordina-
tion variable (My rea1). All models share equal initializations
for the common variables. The main idea is that if M real
outperforms the other models, we cannot use the inferred
coordination to draw any conclusions about the teams, as
there would be no evidence that the data reflects an under-
lying coordination process. However, results in Table 2
demonstrate otherwise—both My,. and Myociiink models
outperform My rea1 in predicting the data. Furthermore, the
inclusion of the semantic modality leads to improved per-
formance in the ASIST dataset. As semantic links are con-
ditionally dependent solely on coordination (refer to §6),
we infer that the enhanced prediction is attributed to a more
accurate estimation of the underlying coordination level.

Without assuming a direct association between coordination
and final team performance, we explore whether estimated
coordination predicts the final team score across different
trials and conditions. Here we split the data into training and
test splits using leave-one-out cross-validation (LOOCYV).
We fit linear regressor on the training set, using the average
of coordination level peaks (see Appendix D) as input fea-
tures and the final team score as the target value. We then
use the fitted model to predict the final team score in the test
split and quantify the performance of the model using the
mean absolute error.

We compare the results against two baseline models: (i)
My, which predicts the score in the test split by averaging
scores from the training split, and (i) Mhyp, which fits a
linear hyperplane using team scores as target values and 4D-
vectors formed by the mean of each vocalic feature across
subjects per mission as input features.

We summarize final team score prediction results in Table 3.
We find that coordination is predictive of team score in the
second mission, but not in the first. Coordination is about
working together—not doing so is more likely to result in no
correlation than a negative one. We hypothesize that this is
due to teams still learning how to play the game in the first
mission, whereas their interactions are more strategy-driven
in the second mission. Indeed, a pairwise #-test (per team)
on the final score in missions A and B shows that the score is
larger in the second mission (p = .001 in the ASIST dataset
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Table 3: Mean absolute error of final team score predictions on the ASIST and TOMCAT datasets, with standard error of the

mean in parentheses. Results were computed using LOOCV.

ASIST ToMCAT

Mission  Model No-Advisor Advisor Combined Advisor
Mayg 142 (30) 106 (18) 120 (17) 121 (21)

Mhyp 168 (18) 147 (40) 129 (21) 110 (36)

A Myoc 178 (45) 90 (21) 120 (19) 139 (24)
Miink 160 (32) 119 (21) 125 (17) 132 (24)

M yocttink 174 (42) 92 (19) 117 (19) 146 (22)

Mayg 113 (19) 179 (25) 143 (17) 104 (22)

Mhyp 151 (29) 147 (28) 150 (20) 86 (24)

B Myoc 93 (12) 125 (26) 112 (18) 74 (17)
Miink 117 (21) 192 (27) 146 (20) 125 (30)

M yoclink 102 (13) 101 (20) 105 (14) 106 (18)

and p = .004 in the TOMCAT dataset).

Notably, using just the semantic modality did not lead to
better performance (Mjink), but using both semantic and
vocalic data (Myoc+link) appears to enhance the predictive
accuracy of final team scores in the ASIST dataset under the
Advisor condition, but not in the TOMCAT dataset. These
findings align with the results observed in Table 2, where the
model with semantic information yielded smaller predictive
error compared to the vocalic-only model in the ASIST
dataset but not in the TOMCAT dataset. Therefore, these
results strengthen the validity of using data prediction errors
as a metric to ascertain the meaningfulness of coordination
estimates.

8. Discussion

We propose a novel computational approach to interpersonal
coordination, treating it as a latent variable encoding how
the latent states of one person influence another. This is
crucial as phenomena in interpersonal interaction manifest
across multiple data modalities and time scales, such as al-
terations in vocal behaviors, body language, neural activity,
and semantic reciprocation during collaborative tasks.

Our approach offers a general and intuitive framework for
capturing dynamic causal processes, representing coordina-
tion as the degree of mixing of evolving distributions. This
excludes synchrony that is the result of a common cause
from a shared environment and it is less brittle than captur-
ing similar behavior via coupled linear dynamical systems
(Guan et al., 2015).

Introducing a new measure for coordination, which con-
solidates complex phenomena, poses evaluation challenges
due to the absence of a ground truth. The ongoing process
involves ensuring the measure yields consistent conclusions,
is predictive of outcomes, and leads to new theories and

experiments. Future work aims to apply our definition to
evaluate coordination in diverse settings and modalities, in-
cluding posture, facial expressions, gaze, core physiological
response, and brain scan data. Additionally, we plan to
address antisymmetric coordination, recognizing situations
where team members deliberately explore different options,
providing valuable insights for Al team coaches.

9. Limitations

We are simultaneously defining and evaluating coordination,
which makes evaluation methodologically challenging. We
have designed the system to infer coordination where there
is actual causal influence and not to pick up spurious coordi-
nation due to a common cause (e.g., the spatially separated
movie goers), however we did not study how robust we are
to spurious coordination. We also did not explore non-linear
dependencies between coordination and team score, which
might be fruitful because the benefits of coordination of-
ten are ‘U-shaped’ (Wiltshire et al., 2019), as collaborators
being too similar can be suboptimal. Finally, our strategy
to identify semantic links between utterances is simplistic,
and may have overlooked deeper semantic associations. We
did not evaluate this compared to human coders, which is
challenging.
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A. Inference Details

We implemented the models using PyMC 5.0.2 (Salvatier et al., 2016), with 2000 warm-up iterations, 2000 samples, 4
parallel chains, a target acceptance probability of 0.9 and default values for the remaining parameters. Convergence was
assessed by ensuring that R<1.1 (Gelman & Rubin, 1992; Brooks & Gelman, 1998) for the latent variables in the model.

All experiments were run on a machine with 128 AMD EPYC 7542 CPU cores and inference runs took ~ 10 minutes per
trial on average.

B. Virtual Search and Rescue

We provide a brief description of the task and salient features of the ASIST and ToMCAT datasets. For more details, see
the study preregistration (Huang et al., 2022b) and the documentation for the datasets (Huang et al., 2022a; Pyarelal et al.,
2023).

B.1. Task

Both the ASIST and the TOMCAT datasets were collected from participants playing the same task. The task consists of a
collapsed building where a team of three participants have to collaborate in different ways to find, treat and move victims to
safe areas in order to earn score points. The scenario is implemented in Minecraft, and the testbed is publicly available at
https://gitlab.com/artificialsocialintelligence/study3.

Each participant is assigned a different role that entails different abilities and speeds. All participants can carry victims,
but the medic is the only one that can treat them. The engineer is the only one that can remove obstacles. The transporter
has the highest speed; hence it can explore the areas faster. In addition, all participants have a set of markers (SOS, rubble,
threat, regular victim, critical victim, no victim, type B, type A) that they can use unlimited times to communicate their
discoveries with the other players.

Regular victims (worth 10 points) and critical victims (worth 50 points) are scattered around the building under piles of
rubble or inside rooms. A regular victim can be injured with abrasions (type A) or bone damage (type B), and a critical
victim (type C) can only be treated after it is stabilized, which happens when more than one participant arrive at its vicinity.
To earn the points associated with treated victims, participants must move them to safe areas matching their types. The
victim types are only known by the medic. Therefore, communication and coordination are essential for teams to succeed in
the mission.

Each team plays two 17-minute-long games: mission A and B, with the same scenario but different victim placement
configurations. The first two minutes are reserved for planning: participants can move and talk to each other, but access
to the building is blocked. In addition, before the first game, participants play a tutorial mission with small tasks devoted
to familiarizing them with their role’s specific abilities and game dynamics. After completing all the individual tasks, the
team will convene and gain access to a designated portion of the building. This setup enables them to undergo training in a
context more closely aligned with the scenarios they will encounter during their upcoming missions. The victim locations
during this part of the training phase differ from those in missions A and B.

B.2. Experimental Design

ASIST In the ASIST experiments, participants carried out the Minecraft missions from their respective homes, operating
remotely. They were instructed to use headsets, and audio streaming quality was qualitatively checked before proceeding
with the mission. Individual audio streams were recorded separately for each team member.

ToMCAT In the TOMCAT experiments, participants were physically situated in a lab and equipped with an array of
sensors, encompassing fundamental physiological measurements like EKG (electrocardiogram), skin conductance (GSR), as
well as eye trackers, in addition to a comprehensive setup featuring both fNIRS (functional near-infrared spectroscopy) and
EEG (electroencephalography) caps. In addition, directional microphones were positioned in front of each participant on the
stations they were operating, resulting, also, in the creation of separate audio files for each team member.

Further, prior to playing the Minecraft missions, participants in the TOMCAT experiments had to complete various small
tasks. This included a resting phase, as well as participation in individual and team affective tasks, rhythmic finger tapping
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exercises, and competitive and cooperative virtual ping-pong games. Consequently, the TOMCAT experiments were longer
and demanded more diverse cognitive load from the participants compared to the ASIST experiments.

B.3. Data Pre-processing

ASIST After removing trials with audio problems, we were left with data from 30 teams of three participants: 16 teams in
the ‘No-Advisor’ condition and 14 in the ‘Advisor’ condition. The published data from this experiment included speech
transcripts automatically generated by the Google Cloud Speech automatic speech recognition (ASR) service, event labels
(Nitschke et al., 2022), raw audio files, as well as a set of vocalic features computed using openSMILE (Eyben et al., 2010).

We noticed that the timestamps in the original ASR transcriptions were not aligned with the utterances in the audio files and
their vocalic features. We corrected these misalignments by reprocessing the audio files through: (i) Whisper (Radford et al.,
2023) to regenerate transcriptions along with start/end timestamps, and (ii) openSMILE (Eyben et al., 2010) to recompute
the vocalic features and associated timestamps. We used the same openSMILE configurations as the ones used to produce
the original dataset. We used Whisper instead of the original Google solution because we noticed by manual inspection that
the former yielded better transcripts.

In addition, we sent the transcriptions through the event extraction system (Nitschke et al., 2022) to regenerate event labels
for the utterances. The transcriptions, event labels, and vocalics in the original data were computed in real-time from live
audio streams instead of subsequently saved audio files, which are what we used. Therefore, the new data is mostly like
the original one, except for the timestamps and a few values computed in periods of small glitches in the audio files. This
reprocessing procedure ensures that the audio files are aligned correctly with detected utterances, associated vocalics, and
labels, providing more reliable data for further analysis.

Among the available features produced by openSMILE, we selected £0final_sma for pitch, rmsenergy_sma for
intensity, jitterlocal_sma for jitter, and shimmerlocal_sma for shimmer.

We manually inspected each identified utterance and associated audio to detect speech quality. During this process, we
identified and subsequently removed some utterances with sound contamination from multiple participants, which can
cause duplicated utterances in the data and unreliable vocalic features. Specifically, in the ‘No-Advisor’ condition we
removed 53 out of 5339 identified utterances, while in the ‘Advisor’ condition, we excluded 14 out of 5001 utterances. This
contamination can be attributed to the remote nature of the data collection—in some instances, the participants did not
comply with the instructions to wear headphones during the experiment, and thus other player’s voices were played over
their computer speakers and captured by their microphones.

In addition, we observed that the ASR service used occasionally split a single utterance into multiple subsequent ones.
To address this issue, we manually merged consecutive utterances from a participant, along with their associated vocalic
features and event labels.

ToMCAT From this dataset, we only used data from the *Advisor’ condition, primarily due to the limited number of trials
available in the No-Advisor’ condition. We discarded data from trials with problems in the audio and trials were one of the
experimenters had to fill in for one of the participants, to avoid using potentially biased data. In total, we utilized data from
9 different teams.

Similar to the ASIST dataset, one of the products of this dataset is speech transcripts that were automatically generated by
the same Google ASR service. However, these transcripts were substantially marred by duplications caused by cross-talk,
given the close proximity of participants playing in the same room. Consequently, we resorted to a manual approach for
finding utterances within each audio file attributed to the primary speaker. We used Praat (Boersma, 2001) to perform this
annotation task.

When defining the boundaries of an utterance, we considered pauses occurring within an utterance as non-silence unless
they extended beyond one second, except in cases where it was evident from the audio that the pause signaled a response
to a question posed by another participant. In such instances, we divided the utterance into two segments. Ultimately, we
generated transcripts using the Whisper ASR system (Radford et al., 2023) and subsequently undertook manual corrections
to rectify transcription errors. The generation of vocalics and event extraction followed the same methodology employed
during the preprocessing of the ASIST dataset.

The resulting reprocessed data for both datasets with all the different types of data streams is too large to submit as part of
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the supplementary material. However, the subset of data needed to train and evaluate our models is further derived and
much smaller, so we include it along with the code in the interest of reproducibility.

C. Semantic Link Labels

The event extraction system (Nitschke et al., 2022) extracts event labels associated with each detected utterance. We use
a subset of these labels to look for temporally separated pairs of utterances that are indicative of team coordination. In
particular, we selected six pairs of (‘source’, ‘target’) labels to detect semantic linkage between two utterances from different
subjects. The specific labels and associated semantics we wanted to capture are shown in Table 4.

Table 4: Pairs of source-target labels used for semantic linking.

Source Target Description

HelpRequest  Rescuelnteractions  Players say they are coming in response to another player’s mention of a victim.

HelpRequest HelpCommand Players offer assistance in response to another player’s request for help.
HelpRequest Move Players say they are coming in response to another player’s request for help.
HelpRequest ~ Agreement Players demonstrate awareness about another player’s request for help.

Plan Agreement Players demonstrate awareness about another player’s plan.

Question Agreement Players demonstrate agreement in response to another player’s question.

Table 5: Example utterances from the ASIST Study 3 dataset and their extracted event labels indicating semantic link events.

Utterance 1 Utterance 2 (Source, Target) label pair
Medic: Okay engineer I need your help in K4 Engineer: All right I'm on the way. (HelpRequest, Agreement)
they re like to victim here but there’s Rubble okay?

Transporter: Engineer can you come to D3? Engineer: Yeah. (Question, Agreement)
Transporter: C4 all right this is transporter we  Engineer: This is engineer and I'm on my way. (HelpRequest, Move)

had a red one in A4 that was marked as an issue
but there’s nothing there also to engineer I am
stuck in D4.

While the event extraction system implemented by Nitschke et al. (2022) is promising, it is not without its limitations. They
report achieving an F1 score of 0.94 for simple events and 0.77 for complex events (the evaluation was done on the ASIST
dataset). Consequently, it is anticipated that our matching procedure may yield some false positives, and we may have
missed some existing semantic link events in the data. Nevertheless, we present in Table 5 a few utterances from the data
that illustrate the system’s ability to capture meaningful semantics from the experiments employed in our evaluation.

On average, we found 31 + 22 links per mission in the ASIST dataset, and 39 + 14 in the TOMCAT dataset.

D. Peaks in Coordination

To identify local maxima in the coordination series, we use the function signal. find _peaks from the SciPy library
(Virtanen et al., 2020) with the parameter width set to 5 to ignore sharp peaks of short duration.

We select the mean coordination at peaks instead of the mean over the whole series for two reasons: (i) coordination in the
beginning and at the end of a mission are unlikely to be as representative as levels of coordination in the middle region,
where peaks are more prolific, (ii) vocalic features and semantic linkage are sparsely observed. Per mission, on average, we
only observe vocalic features on 14% of the time steps in the ASIST dataset and 21% in the TOMCAT dataset; and semantic
links on 3% of the time steps in the ASIST dataset and 4% in the TOMCAT dataset. While our approach can naturally handle
missing data, the levels of coordination inferred at periods with no evidence are less accurate.
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